AN ALGORITHM TO COMPUTE THE EXACT SET OF INTEGERS THAT ARISE FROM A GIVEN n IN PROBLEM OF THE WEEK 1196

WITOLD JARNICKI (KRAKÓW)

We start with the candidate set A of all reachable elements and fix a potential new element d. We are investigating the following set.

$$
B:=\{f(d): f \in A[X], f(0)>0\} .
$$

We want to check whether $0 \in B$. In order to do that, we consider the following set.

$$
C:=\left\{f(d) / d^{n}: f \in A[X], f(0)>0, n \in \mathbb{N}, \operatorname{deg} f<n, d^{n} \mid f(d)\right\} .
$$

The set C is finite and easily computable. Additionally, $0 \in C$ iff $0 \in B$.
Let's now move on to how C is computed. Observe that the following holds.

$$
C=\bigcup_{n=1}^{\infty} C_{n},
$$

where

$$
C_{n}:=\left\{f(d) / d^{n}: f \in A[X], f(0)>0, \operatorname{deg} f<n, d^{n} \mid f(d)\right\} .
$$

Obviously, we have the following.

$$
C_{1}=\{a / d: a \in A, a>0, d \mid a\} .
$$

Additionally, for each $n \in \mathbb{N}, n>0$ we have the following.

$$
C_{n+1}=\left\{(a+b) / d: a \in C_{n}, b \in A, d \mid a+b\right\} .
$$

So, all that happens is that the program computes C_{0} and keeps applying the inductive formula until two successive generations are equal. More precisely, we stop if the following holds for some $k \in \mathbb{N}$.

$$
\bigcup_{n=1}^{k} C_{n}=\bigcup_{n=1}^{k+1} C_{n} .
$$

At such a point no more computation is necessary and we can check whether 0 was reached.

