Problem 1182. A Power Sum Puzzle from Stan Wagon June 2014
Suppose $x_{1}, x_{2}, \cdots, x_{n}$ are n complex numbers and $b_{1}, b_{2}, \cdots, b_{n}$ are real numbers such that

$$
\begin{gathered}
x_{1}+x_{2}+\cdots+x_{n}=b_{1} \\
\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+\cdots+\left(x_{n}\right)^{2}=b_{2} \\
\vdots \\
\left(x_{1}\right)^{n}+\left(x_{2}\right)^{n}+\cdots+\left(x_{n}\right)^{n}=b_{n}
\end{gathered}
$$

What is the value of $\left(x_{1}\right)^{m}+\left(x_{2}\right)^{m}+\cdots+\left(x_{n}\right)^{m}$, i.e. b_{m}, for integer powers $m>n$?
Source: Due to Michael Elgersma, Stan Wagon, extending an old chestnut involving three variables and $3,5,7$ on the right side.

If $n \times n$ matrix A has eigenvalues $x_{1}, x_{2}, \cdots, x_{n}$ then the characteristic equation of A is:

$$
0=\operatorname{det}(\lambda I-A)=\prod_{k=1}^{n}\left(\lambda-x_{k}\right)=\lambda^{n}-\sum_{k=1}^{n} c_{k} \lambda^{n-k}
$$

where

$$
c_{k}=(-1)^{k+1}\left(\sum_{1=i 1<i 2<\cdots<i k}^{n} x_{i 1} x_{i 2} \cdots x_{i k}\right)
$$

The coefficients c_{k} can be solved for in terms of coefficients b_{i} using Newton's identities [S]:

$$
\begin{gathered}
\quad\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
b_{1} & 2 & 0 & \cdots & 0 \\
b_{2} & b_{1} & 3 & \cdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
b_{n-1} & \cdots & b_{2} & b_{1} & n
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right] \\
c_{1}=b_{1} \quad c_{2}=\frac{1}{2}\left[b_{2}-\left(b_{1}\right)^{2}\right] \quad c_{3}=\frac{1}{6}\left[2 b_{3}-3 b_{1} b_{2}+\left(b_{1}\right)^{3}\right] \\
c_{4}=\frac{1}{24}\left[6 b_{4}-3\left(b_{2}\right)^{2}-8 b_{3} b_{1}+6\left(b_{1}\right)^{2} b_{2}-\left(b_{1}\right)^{4}\right] \quad \cdots
\end{gathered}
$$

The characteristic equation is used again to get b_{m}, for integer powers $m>n$, from the c_{k} coefficients. Since $0=\operatorname{det}(A I-A)$, a matrix satisfies its own characteristic equation $A^{n}=\sum_{k=1}^{n} c_{k} A^{n-k}$. Multiplying this last equation by A^{m} gives:

$$
A^{n+m}=\sum_{k=1}^{n} c_{k} A^{n-k+m}
$$

Since $\operatorname{trace}\left(A^{k}\right)=\left(x_{1}\right)^{k}+\left(x_{2}\right)^{k}+\cdots+\left(x_{n}\right)^{k}=b_{k}$, taking trace of the last equation gives a recursion formula for the b_{i} coefficients:

$$
b_{n+m}=\sum_{k=1}^{n} c_{k} b_{n+m-k}
$$

Example: Let $n=4$ and let the b_{i} coefficients be: $b_{1}=1, b_{2}=0, b_{3}=1, b_{4}=0$.
The coefficient formulas derived on the previous page then give:

$$
\begin{gathered}
c_{1}=b_{1}=1 \quad c_{2}=\frac{1}{2}\left[b_{2}-\left(b_{1}\right)^{2}\right]=-1 / 2 \quad c_{3}=\frac{1}{6}\left[2 b_{3}-3 b_{1} b_{2}+\left(b_{1}\right)^{3}\right]=1 / 2 \\
c_{4}=\frac{1}{24}\left[6 b_{4}-3\left(b_{2}\right)^{2}-8 b_{3} b_{1}+6\left(b_{1}\right)^{2} b_{2}-\left(b_{1}\right)^{4}\right]=-3 / 8
\end{gathered}
$$

Using these values in the recursion formula for the b_{i} coefficients:

$$
\begin{gathered}
b_{5}=\sum_{k=1}^{4} c_{k} b_{4+1-k}=c_{1} b_{4}+c_{2} b_{3}+c_{3} b_{2}+c_{4} b_{1}=0-\frac{1}{2}+0-\frac{3}{8}=-\frac{7}{8} \\
b_{6}=\sum_{k=1}^{4} c_{k} b_{4+2-k}=c_{1} b_{5}+c_{2} b_{4}+c_{3} b_{3}+c_{4} b_{2}=-\frac{7}{8}+0+\frac{1}{2}+0=-\frac{3}{8} \\
b_{7}=\sum_{k=1}^{4} c_{k} b_{4+3-k}=c_{1} b_{6}+c_{2} b_{5}+c_{3} b_{4}+c_{4} b_{3}=-\frac{3}{8}+\left(\frac{1}{2}\right) \frac{7}{8}+0-\frac{3}{8}=-\frac{5}{16} \\
b_{8}=\sum_{k=1}^{4} c_{k} b_{4+4-k}=c_{1} b_{7}+c_{2} b_{6}+c_{3} b_{5}+c_{4} b_{4}=-\frac{5}{16}+\left(\frac{1}{2}\right) \frac{3}{8}-\left(\frac{1}{2}\right) \frac{7}{8}+0=-\frac{9}{16} \\
b_{9}=\sum_{k=1}^{4} c_{k} b_{4+5-k}=c_{1} b_{8}+c_{2} b_{7}+c_{3} b_{6}+c_{4} b_{5}=-\frac{9}{16}+\left(\frac{1}{2}\right) \frac{5}{16}-\left(\frac{1}{2}\right) \frac{3}{8}+\left(\frac{3}{8}\right) \frac{7}{8}=-\frac{17}{64} \\
b_{10}=\sum_{k=1}^{4} c_{k} b_{4+6-k}=c_{1} b_{9}+c_{2} b_{8}+c_{3} b_{7}+c_{4} b_{6}=-\frac{17}{64}+\left(\frac{1}{2}\right) \frac{9}{16}-\left(\frac{1}{2}\right) \frac{5}{16}+\left(\frac{3}{8}\right) \frac{3}{8}=0
\end{gathered}
$$

Reference: [S] Raymond Seroul, "Programming for Mathematicians," Springer, 2000.

